The O-D Out-of-plane Deformation of Enolized β-Dicarbonyl Compounds

By H. OGOSHI* and Z. YOSHIDA

(Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Yoshida, Kyoto, Japan)

Summary The O-D out-of-plane deformation of enolized β -dicarbonyls is a useful indication of the strength of intramolecular hydrogen-bond systems.

THE strength of intramolecular hydrogen bonding in β -dicarbonyl compounds has been discussed in terms of the frequency shift of the carbonyl stretching vibration and the chemical shift of the enolic proton.¹⁻³ There are some difficulties in determining the strength of the hydrogen bond from the vibrational spectrum.³ The hydroxyl stretching vibration exhibits a broad, weak band in the region of 2500–3000 cm⁻¹, and it is extremely difficult to

FIGURE. Plot of $\pi(O-D)$ frequencies against chemical shifts of the enolic protons. 1. Hexafluoroacetylacetone. 2. Methyl α -phenylthioacetoacetate. 3. Ethyl α -phenylthioacetoacetate. 4. Trifluoroacetylacetone. 5. 3-Chloropentane-2,4-dione. 6. Acetylacetone-(pentane-2,4-dione). 7. Benzoylacetone. 8. 3-Cyanopentane-2,4dione. 9. 3-Nitropentane-2,4-dione. 10. Dibenzoylmethane. 11. 3-Methylthiopentane-2,4-dione. 12. 3-Acetylpentane-2,4-dione. 3. Tetra-acetylethane. 14. 3-Methoxycarbonylpentane-2,4-dione.

define its centre. The C=O stretching is strongly perturbed by the C=C stretching vibration. The in-plane deformation of the hydroxy-group does not show a clear absorption, because of the superposition of the C-O stretching and the CH₃ bending deformation. Further, the hydroxyl out-ofplane deformation, $\pi(OH)$, appears usually as a shoulder band or a hidden band at around the same frequency as the strong methyl rocking absorption or the in-plane C-H deformation and the skeletal deformation of the aryl groups. Thus, the $\nu(OH)$ and $\pi(OH)$ frequencies are not available for the purpose of present study (cf. o-substituted phenols.⁵)

The O-D out-of-plane deformation may be used to evaluate the strength of an intramolecular hydrogen bond in β -dicarbonyl compounds. Deuteriation of the enolic proton was easily performed by shaking with D₂O or CH₃OD. The π (OD) absorption was observed as a new band in the range 580—750 cm⁻¹. The Figure shows a plot of the frequency of π (OD) in CS₂ against τ_{OR} in CCl₄. This linear relationship indicates that formation of the stronger intramolecular hydrogen bond results in a higher frequencyshift of π (OD) and a lower magnetic-field shift of τ_{OR} .

Miyazawa and Pitzer⁴ have reported the relationship between the torsional force-constant and the double-bond character of the C-O bond for formic acid. The O-D outof-plane deformation can be expressed as a torsional vibrational mode around the C-O bond of the enolic ring.⁵ Therefore, this frequency mode should be related to the double-bond character of the C-O bond) being dependent upon the extent of delocalization of the π -electrons of the enolic ring. Thus, the linear relationship between the frequency of $\pi(OD)$ and τ_{OH} suggests that the intramolecular hydrogen bond is closely associated with π -conjugation of the enolic ring. The X-ray crystallographic study of tetra-acetylethane⁶ shows that a symmetrical hydrogen bond and two effectively equal C-O bonds are formed. The deuteriated compound exhibits a high $\pi(O-D)$ frequency at 747 cm⁻¹ as expected, its $\pi(OH)$ probably being hidden by the strong absorption at around 1000 cm⁻¹. The relationship demonstrated provides an alternative and more reliable indication of the strength of intramolecular

hydrogen bonds in β -dicarbonyl compounds, such as β -triketones, β -diketones, and β -keto-esters.

(Received, December 11th, 1969; Com. 1876.)

- ¹ S. Forsén and M. Nilsson, Acta Chem. Scand., 1959, 13, 1383.
 ² J. L. Burdett and M. T. Rogers, J. Amer. Chem. Soc., 1964, 86, 2105.
 ³ H. Ogoshi and K. Nakamoto, J. Chem. Phys., 1966, 45, 3113.
 ⁴ T. Miyazawa and K. S. Pitzer, J. Chem. Phys., 1959, 30, 1076.
 ⁵ R. A. Nyquist, Spectrochim. Acta, 1963, 19, 1655.
 ⁶ J. P. Schaefer and P. J. Wheatley, J. Chem. Soc. (A), 1966, 528.